Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0381919960260030379
Korean Journal of Microscopy
1996 Volume.26 No. 3 p.379 ~ p.388
Formation of Incommensurate Phase in TiNiFe Processed by Self-propagating High Temperature Synthesis Method
Cho Jae-Seob

Kim Do-Hyang
Kim Yong-Seog
Abstract
Structure of premartensite in $Ti_{50}Ni_{49}Fe_1\;and\;Ti_{50}Ni_{50}$ prepared by self-propagating high temperature synthesis (SHS) method has been investigated by a detailed transmission electron microscopy. $Ti_{50}Ni_{49}Fe_1$ consists of microdomain area and needle type domain area. On the other hand, $Ti_{50}Ni_{50}$ consists of microdomain-free and microdomain area, and needle type domain area. Various types of extra superreflections, such as 1/2<100>, 1/2<110> and 1/4<210> type superreflection have been observed in the selected area electron diffractions from microdomain area. Such extra superreflections are due to transformation from B2 structure to distorted B2 structure or premartensite. The present study shows that incommensurate phase forms as an intermediate phase during martensitic transformation. Particularly, in Fe-free $Ti_{50}Ni_{50}$, two types of matrix phases have been observed, microdomain and microdomain-free area. Types of extra superreflections in $Ti_{50}Ni_{50}$ are different from those in $Ti_{50}Ni_{49}Fe_1$, i.e. 1/7<321> type superreflections have been observed, instead of 1/2<110>, 1/2<100>, 1/4<210> types in $Ti_{50}Ni_{49}Fe_1$.
KEYWORD
Self-propagating high temperature synthesis, TiNiFe shape memory alloy, Incommensurate phase, R phase
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)